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SUMMARY

A novel low computational complexity robust adaptive blind multiuser detector, based on the minimum
output energy (MOE) detector with multiple constraints and a quadratic inequality (QI) constraint is
developed in this paper. Quadratic constraint has been a widespread approach to improve robustness
against mismatch errors, uncertainties in estimating the data covariance matrix, and random perturbations
in detector parameters. A diagonal loading technique is compulsory to achieve the quadratic constraint
where the diagonal loading level is adjusted to satisfy the constrained value. Integrating the quadratic
constraint into recursive algorithms seems to be a moot point since there is no closed-form solution for
the diagonal loading term. In this paper, the MOE detector of DS/CDMA system is implemented using
a fast recursive steepest descent adaptive algorithm anchored in the generalized sidelobe canceller (GSC)
structure with multiple constraints and a QI constraint on the adaptive portion of the GSC structure. The
Lagrange multiplier method is exploited to solve the QI constraint. An optimal variable loading technique,
which is capable of providing robustness against uncertainties and mismatch errors with low computational
complexity is adopted. Simulations for several mismatch and random perturbations scenarios are conducted
in a rich multipath environment with near–far effect to explore the robustness of the proposed detector.
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1. INTRODUCTION

Constrained optimization methods have received considerable attention as a means to derive blind
multiuser receivers for DS/CDMA system with low complexity [1, 2]. Most of the constrained
optimization approaches [3–6] are based on the well-known RLS algorithm. In the conventional
RLS algorithm, the calculation of the Kalman gain requires matrix inversion of the received signal
covariance matrix. When the data covariance matrix is in ill condition the conventional RLS algo-
rithm will rapidly become impossible [7]. Furthermore, when the estimated data covariance matrix
lacks the property of positive definiteness, the algorithm will diverge [8]. Moreover, the least-square
detectors need more robustness against pointing errors and perturbations in detector parameters.

To overcome the above shortcomings, a robust low-complexity blind multiuser receiver is
developed using a fast recursive steepest descent (RSD) algorithm based on the generalized sidelobe
canceller (GSC) structure. The RSD algorithm is analogous to the recursive conjugate gradient
(RCG) algorithm [8–10]. The RSD algorithm is employed to update the adaptive weight vector
of the GSC structure with optimum step-size for rapid convergence [11, 12]. Furthermore, a low
computational complexity recursive update formula for the gradient vector of RSD algorithm is
derived.

Additionally, a quadratic inequality (QI) constraint on the weight vector norm is imposed
to manage the residual signal mismatch and other random perturbations errors. Moreover, the
QI constraint freezes the noise constituent in the output signal-to-interference-plus-noise ratio
(SINR) during adaptive implementation and hence overcomes noise enhancement at low SNR.
Quadratic constraints have been used in adaptive beamforming for a variety of purposes such
as improving robustness against mismatch and modelling errors, controlling mainlobe response,
and enhancing interference cancellation capability [13–18]. An eigendecomposition approach is
proposed in [18] to solve the QI constraint, which requires O(N3) complexity where N is the weight
vector length. In [16, 17], new techniques for integrating the QI constraint into RLS algorithm are
developed. Moreover, closed-form solutions for the diagonal loading term with O(N2) complexity
are provided. These approaches provide a robust linearly constraint minimum variance beamformer
based on the RLS algorithm with a variable loading (VL) technique based on Taylor series
expansion approximation. The approaches in [16, 17] are extended to the DS/CDMA multiuser
detection problem in [6, 19], respectively. These approaches provided robust DS/CDMA receivers
based on the RLS algorithm with a QI constraint on the weight vector norm. Unfortunately, the
developed VL techniques in [6, 19] depend on an approximation that is valid for small loading
level. Therefore, for large loading levels these techniques fail to acquire the optimum diagonal
loading amount [16, 17]. In addition to this, the proposed recursive implementations are based
on RLS [6, 16, 17] or inverse QRD-RLS [19] algorithms. Efficient VL implementations for the
robust adaptive beamforming problem are introduced in [17, 20], which require O(N) complexity.
These VL techniques are embedded with gradient minimization algorithms to estimate the robust
adaptive beamformer.

Motivated by the above discussion, an alternative way of robust recursive multiuser detector is
presented in this paper (also see [11, 12]), based on the low-complexity RSD adaptive algorithm
with a QI constraint on the weight vector norm. An accurate VL technique based on the GSC struc-
ture is developed for precisely computing the diagonal loading level without eigendecomposition
or Taylor approximation. The VL technique is integrated into the RSD adaptive algorithm, which
exploited to update the adaptive weight vector of the GSC structure. The geometrical interpretation
of the RSD-based VL technique is demonstrated.
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The remainder of the paper is organized as follows. In Section 2, linear detection, GSC structure,
and RSD algorithm are outlined. In Section 3, the proposed robust adaptive detector is developed and
its convergence analysis and geometric representation are presented. Computer simulations and
performance comparisons are carried out in Section 4. Conclusions and points for future work are
summarized in Section 5.

2. BACKGROUND

A chip-rate linear detector is generally designed by collecting N f samples from the received
discrete-time signal x(n). The linear detector output is a linear combination of the received chip-
sampled signals [3–7], i.e.

y(n)= fH(n)x(n) (1)

where fH(n) is an N f ×1 vector consisting of the weights and (·)H stands for the Hermitian
transpose. The detector output energy is given by [2, 6]

E{|y(n)|2}= E{|fH(n)x(n)|2}= fH(n)Rxx (n)f(n) (2)

where the matrix Rxx (n)= E{x(n)xH(n)} is the received signal covariance matrix and E{·} stands
for the expectation operator.

The minimum output energy (MOE) detector can be obtained by minimizing the output energy
of the receiver subject to certain number of constraints. To avoid the cancellation of the signal of
interest scattered in different multipaths during the minimization of the detector output energy, we
can generally impose a set of linear constraints of the form CH

1 f=g where C1 is N f ×Ng matrix
consisting of shifted versions of the interested user signature waveform [2–7] and g is a Ng ×1
vector of constraints.

Therefore, the optimal MOE detector can be obtained by solving the following constrained
minimization problem:

min
f

fHRxx f s.t. CH
1 f=g (3)

The so-called GSC structure was originally implemented in adaptive array processing and
beamforming algorithms [21–23]. The essence behind the GSC structure is to convert a constrained
optimization problem to an unconstrained optimization problem. This is accomplished by dividing
the detector vector into two parts: a non-adaptive N f ×1 vector fc, which satisfies the constraints,
and an adaptive (Na =N f −Ng)×1 vector fa , which can be adapted without constraints using any
adaptation algorithm up to a certain tolerance level. The weight vector is then divided into two
orthogonal parts and can be expressed as

f= fc−Bfa (4)

A blocking matrix B with dimension N f ×Na is inserted to ensure the orthogonality between the
upper and lower branches of the GSC structure, which satisfies BHC1=0 and BHB= I. Therefore,
using (4) the constrained optimization problem given in (3) can be converted to unconstrained
minimization problem. The optimal weight vector fa can be found by substituting (4) into (3) and
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minimizing the receiver’s output energy as follows:

min
fa

(fc−Bfa)HRxx (fc−Bfa) (5)

2.1. Recursive steepest descent (RSD) algorithm

The method of RSD is employed to recursively update the optimal weight vector that minimizes
the following Lagrangian cost function [11, 12, 17, 24]:

�(fa)= 1
2(fc−Bfa)HRxx (fc−Bfa) (6)

Therefore, the adaptive weight vector fa of the GSC structure can be updated as follows:

fa(n)= fa(n−1)−�∇fa (n−1) (7)

where � is the step-size of the algorithm and ∇fa (n−1) is the conjugate derivative of �fa with
respect to fHa determined at (n−1) snapshot. From (6), the gradient vector can be computed as

∇fa =−BHRxx fc+BHRxxBfa =−PBf (8)

Therefore, the recursive implementation of fa(n) can be acquired by substituting (8) into (7)

fa(n)= fa(n−1)−�(RBfa(n−1)−pB) (9)

where RB =BHRxxB, pB =PBfc, PB =BHRxx , and f(n−1)= fc−Bfa(n−1).
The convergence speed of the RSD algorithm is affected by the step-size selection [25]. In

fact, a variable step-size approach increases the convergence speed of the algorithm and reduces
the algorithm sensitivity to step-size selection. Therefore, in order to obtain an expression for the
optimum step-size, we plug (9) in (6), which yields [25]:

�(fa)= 1
2(f(n−1)+�B∇fa (n−1))HRxx (f(n−1)+�B∇fa (n−1)) (10)

By incorporating the variable step-size �(n) into the above equation instead of the fixed step-size
and after some manipulations, we obtain

�fa (n)=�fa (n−1)+�(n)∇H
fa (n−1)PBf(n−1)+0.5�2(n)∇H

fa (n−1)RB∇fa (n−1) (11)

where �fa (n) is �(fa) determined at n snapshot. Equation (11) shows that �fa (n) is a quadratic
function of �(n) and hence it has a global minimum. Assuming that �fa(n−1) is independent
of �(n), the optimum step-size can be obtained by differentiating (11) with respect to �(n) and
equating the result with zero, we have

�opt(n)=− �∇H
fa

(n−1)PBf(n−1)

∇H
fa

(n−1)RB∇fa (n−1)

∣∣∣∣∣∇fa=−PB f

⇒ �‖∇fa (n−1)‖2
∇H
fa

(n−1)RB∇fa (n−1)
(12)

where � is a positive constant added to improve the numerical stability of the algorithm.
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3. ROBUST DETECTOR DESIGN

The robust detector is obtained by applying the QI constraint on the adaptive weight portion of the
GSC structure (i.e. fa) [11–16] and consequently the following constrained optimization problem
is obtained:

fa =min
fa

(fc−Bfa)HRxx (fc−Bfa) s.t. fHa fa��2 (13)

where the constrained value �2=�2−fHc fc, �2= t‖fc‖2, and the constant t is set to an appropriate
value.

The method of Lagrange multipliers is invoked to solve this constrained minimization problem
by forming the following real-valued Lagrangian function [12, 16]:

�(fa,�0)= 1
2 (fc−Bfa)HRxx (fc−Bfa)+�0S(fHa fa−�2) (14)

where s(·) is a step function inserted to ensure that fHa fa��2 and the Lagrange multiplier �0 is
a real scalar, which is determined from the QI constrained value. It should be non-negative to
ensure that the diagonally loaded covariance data matrix is positive definite. The problem is then
converted from constrained minimization to unconstrained minimization problem. The optimal
solution is obtained by first taking the gradient of �(fa,�0) with respect to fHa and then equating
the resulting quantities to zero, we get,

fa(opt) = (RB+�0I)−1pB (15)

The recursive implementation of the above detector incorporates several difficulties. In addition
to the complicity due to the inverse matrix computation, the value of diagonal loading term �0
cannot be easily determined from the constrained value �2 where there is no closed-form expression
for the optimum loading level.

Recently, Tian et al. [6, 16] developed a VL technique based on Taylor series approximation
and they adaptively incorporated it into the RLS algorithm. This VL technique relies on the
approximation, which is generally valid for small loading level. Therefore, for large loading levels
this technique fails to reach the optimum loading amount. The loading required at certain step
in the VL manner is an incremental loading level that supplements the loading incorporated at
all the previous steps. This is usually a small amount and the optimal incremental loading level
to satisfy the quadratic constraint can usually be achieved. However, in some dynamic scenarios,
abrupt mismatch may lead to performance degradation due to the requirement of large diagonal
loading level, which cannot be achieved by this technique. In addition to this, the diagonal loading
term �0 requires O(N2

a +2Na) multiplications.
Being motivated by the above discussion, a new optimal VL technique capable of precisely

computing the optimum diagonal loading term �0 is developed in this paper. In addition, the
proposed VL technique is efficiently integrated into the RSD algorithm (referred to as RSD-VL)
for recursively estimating the optimal robust detector with O(Na) complexity. The value of
the optimum diagonal loading level is estimated without approximation. The RSD algorithm is
exploited to recursively update the optimal weight vector that minimizes (14), i.e.

�(f̃a,�0)=�(f̃a)+�0s(f̃Ha f̃a−�2) (16)
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where f̃a stands for the robust detector. As a consequence,

f̃a(n)= f̃a(n−1)−�(n)∇̄f̃a
(n−1) (17)

where

∇̄f̃a
(n−1)=∇fa(n−1)+�0(n)f̃a(n−1) (18)

and ∇̄f̃a
(n−1) stands for the robust gradient and ∇fa (n−1) stands for the non-robust gradient.

Then, the robust detector can be expressed as follows:

f̃a(n)= fa(n)−�(n)�0(n)f̃a(n−1) (19)

where

fa(n)= f̃a(n−1)−�(n)∇fa (n−1) (20)

The step function that is dropped as the second term in (21) is incorporated only when
fHa (n)fa(n)>�2. The QI constraint should be satisfied at each iteration step, i.e. f̃Ha (n)f̃a(n)��2,
and assuming the constraint was satisfied in the previous step and using (19), we have

(fa(n)−�(n)�0(n)f̃a(n−1))H(fa(n)−�(n)�0(n)f̃a(n−1))��2 (21)

The value of �0 can be found by solving the following quadratic equation (only if the QI constraint
is not met):

�(n)2‖f̃a(n−1)‖2�0(n)2−2�(n)Re{fHa (n)f̃a(n−1)}�0(n)+fHa (n)fa(n)−�2=0 (22)

Therefore, the value of �0(n), which satisfies the QI constraint is obtained by solving (22), which
yields:

�0(n) = −b±√
b2−4ac

2a

a = �(n)2‖f̃a(n−1)‖2
(23)

where

b = −2�(n)Re{fHa (n)f̃a(n−1)}
c = ‖fa(n)‖2−�2

(24)

When the QI constraint is not satisfied (i.e. fHa (n)fa(n)>�2) and consequently C>0, the roots
of the quadratic equation (22) are either two real-positive values or a conjugate pair whose real
parts are positive. Therefore, the condition that �0 is positive is satisfied. Furthermore, the complex
roots can be avoided by properly selecting the step-size, which cannot be guaranteed by the VL
technique presented in [16]. Moreover, the proposed VL technique depends only on the previous
update of the weight vector as shown in (19). Consequently, the total amount of the required
multiplications to calculate the diagonal loading term �0(n) is about O(2Na). Compared with the
VL technique in [16], the new VL technique has a substantially lower computational complexity.

We should stress on the difference between the proposed RSD-VL technique developed in this
paper and the simple VL least mean square (LMS) algorithm. It is demonstrated in [16, 24] that
Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
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the VL LMS technique does not offer additional improvement over the scaled projection LMS
approach or even over the LMS algorithm without the QI constraint [12].

It is important to derive the sufficient conditions on the step-size, which guarantee real-positive
roots for (22). The following two conditions state the necessary and sufficient conditions under
which (22) has real and positive solutions, respectively:

Condition 1 (b2−4ac�0): By substituting (20) and (24) into b2−4ac�0 and similar to the
approach in [17], the following inequality is obtained:

�(n)� �‖f̃a(n−1)‖√
‖f̃a(n−1)‖2‖∇fa(n−1)‖2−∇H

fa
(n−1)f̃a(n−1)f̃Ha (n−1)∇fa(n−1)

(25)

The above inequality is valid for real vectors. However, it can be generalized to complex vectors as
in [17]. Therefore, this upper bound on �(n) guarantees real-positive roots for (22) and consequently,
the optimum loading level can be obtained. The equality in (25) represents the one positive real-root
solution of (22), i.e. b2−4ac=0⇒�0=Re{fHa (n)f̃a(n−1)}/�(n)‖f̃a(n−1)‖2.

Additionally, based on the well-known Cauchy-Schwarz inequality [26] and the fact that f̃
H
a

(n−1)f̃a(n−1)��2, it is easy to verify that

‖f̃a(n−1)‖2‖∇fa(n−1)‖2�∇H
fa (n−1)f̃a(n−1)(∇H

fa(n−1)f̃a(n−1))H (26)

Therefore, this inequality guarantees the existence of the step-size upper bound for any gradient
vector ∇fa (n−1). The equality in (26) occurs when the ∇fa (n−1) vector has the same direction
of the detector f̃a(n−1).

Condition 2 (b�0): In addition to (25), one more constraint on the step-size is obligatory to
guarantee positive diagonal loading (i.e. b�0). Substituting (9) and (20) into b�0, yields:

�(n)[f̃a(n−1)HRB(n)f̃a(n−1)− f̃a(n−1)HPB(n)fc]�‖f̃a(n−1)‖2 (27)

The sign on the left-hand side of (27) is determined based on the constrained value �2= (t−1)‖fc‖2.
In several practical scenarios, the constrained parameter t is selected within (1,2]. Therefore, the
sign on the left-hand side is negative and hence positive diagonal loading (i.e. b�0) is always
guaranteed.

3.1. Low-complexity recursive implementation

Summarizing the proposed adaptive receiver (referred to as MOE-RSD w. QC), the matrices RB(n)

and PB(n) are updated using exponentially decaying data windows as follows:

RB(n)=�RB(n−1)+z(n)zH(n) (28)

PB(n)=�PB(n−1)+z(n)xH(n) (29)

where

z(n)= BHx(n) (30)

and � is the usual forgetting factor with 0<<��1. The unconstrained detector fa(n) is updated
using (20). When fa(n) does not fulfil the QI constraint, the optimum loading level is calculated
using (23) and the robust detector f̃a(n) is computed using (19).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
DOI: 10.1002/acs



A. ELNASHAR, S. ELNOUBI AND H. ELMIKATI

In spite of the simplicity of the proposed robust MOE-RSD w. QC algorithm, its recursive
implementation requires high computational load resulting from storing and updating the two
matrices RB and PB . To overcome this drawback, the gradient vector can be recursively updated
by substituting (9), (17)–(20), (28), and (29) into (8) and after some manipulations, the following
recursive update equation for gradient vector is obtained:

∇fa (n)=�∇fa (n−1)− y(n)z(n)−�(n)RB(n)∇̄f̃a
(n−1) (31)

where

y(n)= yc(n)− ya(n)=xH(n)fc−zH(n)f̃a(n−1) (32)

Therefore, the matrix RB(n) is merely updated. The second gradient vector on the right-hand side
of (31) ∇̄f̃a

(n−1) includes pervious diagonal loading effects as shown in (18).
The proposed robust MOE-RSD w. QC algorithm with the required amount of multiplications

at each step is summarized in Table I. An if–else condition statement is added to ensure that C>0;
if this condition is achieved, the VL subroutine is executed and a new update procedure for the
detector is conducted based on (19) and (23). Otherwise, the algorithm resumes without executing
the VL subroutine. Equation (23) contains two roots; the smaller root is selected to guarantee
stability of the algorithm. As shown in Table I, the total amount of the required multiplications
at each snapshot of the proposed detector is about O(2N2

a +NaNf +6Na+Nf ), including RB(n)

update, the VL technique, optimum step-size estimation, and the robust detector update, while the
robust detector in [6] requires about O(3N2

a +NaNf +6Na +Nf ) multiplications. The non-robust
version of the proposed detector (referred to as MOE-RSD) can be obtained by removing the VL
technique from Table I.

3.2. Convergence analysis

To examine the convergence of the proposed algorithm, we will derive conditions on the step-size,
which guarantee that the detector fa(n) asymptotically converges to its optimal value given in (15).
This can be done by evaluating the difference between the expected value of the recursive detector
fa(n) and its optimal value [15], i.e.

εfa (n)= E{f̃a(n)}−fa(opt) (33)

By substituting (9), (15), and (19) into (33), we get

εfa (n)= (I−�(n)(RB+�0(n)I))E{f̃a(n−1)}+�(n)pB−fa(opt) (34)

After some manipulations, we can write (34) as follows:

εfa(n)= (I−�(n)(RB+�0(n)I))εfa(n−1)+�(n)pB−�(n)(RB+�0(n)I)fa(opt) (35)

It can be seen that the last two terms are cancelled, and hence a recursive formula for εfa is
obtained as follows:

εfa(n)= (I−�(n)(RB+�0(n)I))εfa(n−1) (36)

Therefore, the convergence of the algorithm depends on the eigenvalue spread of the diagonally
loaded blocked data matrix. If the eigenvalues of (RB +�0I) are denoted by �i , then the proposed
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Table I. Summary of the robust MOE-RSD w. QC detector.

Initialization
RB(0)=BH(�INa )B, fc=C1(CH

1 C1)
−1g

�2= t ·‖fc‖2, �2=�2−‖fc‖2
�=0.1, �10(0)=0
fa(n)=0Na×1, ∇̄f̃a

(0)=BH(�INa )fc
For n=1,2, . . . ,do

z(n)=BHx(n); NaN f
y(n)=xH(n)fc+zH(n)f̃a(n−1); N f +Na
RB(n)=�RB (n−1)+zH(n)z(n), N2

a
∇̄f̃a

(n−1)=∇fa (n−1)+�10(n−1)f̃a(n−1)

�(n)=
�‖∇̄f̃a

(n−1)‖2
∇̄H
f̃a

(n−1)RB (n)∇̄f̃a
(n−1)

; Na +N2
a

∇fa (n)=�∇fa (n−1)− y(n)z(n)−�(n)RB(n)∇̄f̃a
(n−1)

fa(n)= f̃a(n−1)−�(n)∇fa (n)

If (‖fa(n)‖2>�2); Na
a=�(n)2‖f̃a(n−1)‖2; Na
b=−2�(n)Re{fHa (n)f̃a(n−1)}, Na

c=‖fa(n)‖2−�2

�10(n)= −b−(
√
b2−4ac)

2a

f̃a(n)= fa(n)−�(n)�10(n)f̃a(n−1)
Else

�10(n)=0
f̃a(n)= fa(n)

End if
f̃(n)= fc−Bf̃a(n); (only for evaluation)

End for
End

robust detector is guaranteed to converge to its optimum value with optimum diagonal loading
computation if the following general upper bound on the step-size is guaranteed:

0<�(n)<min

⎧⎨
⎩

1

�max
,

�‖f̃a(n−1)‖√
‖f̃a(n−1)‖2‖∇fa (n−1)‖2−∇H

fa
(n−1)f̃a(n−1)f̃Ha (n−1)∇fa (n−1)

⎫⎬
⎭ (37)

The step-size inequality constraint in (37) could be used to oversee the update process of
fa(n) (in advance) to precisely compute the optimum diagonal loading value. Furthermore, several
numerical simulations indicate that the optimum step-size, which guarantees faster convergence is
always lower than the upper bound in (37) by an order of magnitude.
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3.3. Geometric interpretation

To examine the proposed RSD-VL technique, let us consider a simple 2D case. Figure 1 represents
the proposed RSD-VL technique. Suppose that the vector OA= f̃a(n−1) fulfils the QI constraint,
which is determined by the circle in the figure. After the next update and without the QI constraint,
we obtain the vector OB= fa(n), which may not satisfy the QI constraint. The proposed VL
technique is then invoked by adding the vector BC1=−�(n)�10 f̃a(n−1) to the vector OB. As
a consequence, the constrained vector OC1, which satisfies the QI constraint is obtained. The
diagonal loading value �10(n) represents the smaller root of (22) and �20(n) represents the larger

root. If the larger root is selected, a new constrained vector OC2==
f a(n) is obtained. The smaller

root �10(n) is always preferred to guarantee algorithm stability.
An important observation is that the QI constrained region is a closed circle centred at the

origin O and the concentric ellipses represent the unconstrained cost function in (6) and its
centre is the minimal point without the QI constraint. Hence, the tangency point C1 with the QI
constrained boundary is the optimum loading point in the sense of satisfying the QI constraint and
the unconstrained MOE cost function (6).

3.4. Constrained value selection

The selection of the constrained value is a compromise among robustness, optimality, and compu-
tational load of the algorithm. Low constrained value leads to more robust algorithm at the expense
of optimality and computational load. Increasing the constrained value decreases the number of
VL subroutine execution, and hence decreases the computational load until a certain limit where
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Figure 1. Geometric illustration of the proposed RSD-VL technique.
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the algorithm robustness starts to decline. The essence behind any QI constraint technique is to
boost the robustness of the algorithm without affecting the optimality of the algorithm, which can
be achieved without the existence of uncertainties and mismatch errors that necessitates adding
robustness. Therefore, the constrained value can be set within a certain range of values. The
reasonable range of the constrained value is not a static range but it is a dynamic range depending
on the system parameters, the required amount of robustness, and the algorithm optimality. The
appropriate value of the constrained value could be selected practically based on some preliminary
(coarse) knowledge about wireless channels or using Monte Carlo simulation.

4. SIMULATIONS RESULTS

In this section, the performance of the proposed detector is investigated and compared with the
traditional blind MOE detector, which updated using the RLS algorithm (referred to as MOE-RLS)
and the robust detector proposed in [6] (referred to as MOE-RLS w. QC). Five synchronous users
using 31 chips Gold codes in a multipath Rayleigh fading channel with 5 multipath components
are simulated. The channel length (max delay spread) is assumed to be 10 delayed components
and multipath delays are randomly distributed. The detector is assumed to be synchronized to
the interested user. Users are assumed to have equal power except the required user, which is
assumed to have 10 dB lower than other users and SNR is 30 dB. The detector length is assumed
to span a single symbol interval. The output SINR and the bit error rate (BER) are adopted as the
performance measures. The BER rate is determined by the receiver output SNR and the Euclidean
distance between the receiver output and the decision boundary.

In order to verify the robustness of the proposed detector, five scenarios are analyzed. The
first scenario is referred to as the ideal scenario, where all the initialization and algorithm param-
eters are properly selected. The initialization parameters of this scenario are as follows: �=1,
�2=1.35(‖fc‖2), fa(n)=0Na , and �=1. The selection of the constrained value is based on a
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Figure 2. SINR versus iterations for the ideal scenario.
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Figure 3. BER versus iterations for the ideal scenario.
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Figure 4. SINR versus iterations for the second scenario.

compromise between the robustness and the performance optimality. Figures 2 and 3 illustrate,
respectively, the SINR and BER for the three detectors using the ideal scenario. The performance
of the three detectors in terms of the convergence speed is almost the same where the ideal scenario
decreases the necessity for robustness. Therefore, the VL subroutine is infrequently executed. Note
however that, the figures show that the proposed detector offers little steady-state performance
improvement over the MOE-RLS w. QC detector.

The second scenario is based on adding an uncertainty to the data covariance matrix by setting
the forgetting factor to a smaller value, which is equivalent to a small sample support scenario.
Figures 4 and 5 show, respectively, the SINR and BER for the three detectors with �=0.996. The
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Figure 5. BER versus iterations for the second scenario.
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Figure 6. SINR versus iterations for the third scenario.

optimality of the proposed detector in terms of the robustness and the steady-state performance is
evident from the figures.

The third scenario is constructed by improper initialization of the covariance matrix by setting
�=10. Figures 6 and 7 demonstrate the SINR and BER for this scenario. In the fourth scenario,
the detector parameters are improperly initialized such as fa(0)=[1 . . . 1]T. The SINR and
BER for this scenario are illustrated in Figures 8 and 9, respectively. The performance of
the non-robust MOE-RLS detector is seriously degraded with these scenarios while the MOE-
RSD w. QC detector is shown to have a comparable or a slightly better performance over the
MOE-RLS w. QC detector.
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Figure 7. BER versus iterations for the third scenario.
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Figure 8. SINR versus iterations for the fourth scenario.

In the fifth scenario the SNR is reduced to 10 dB with the parameters of the ideal scenario.
Figures 10 and 11 illustrate the performance of the three aforementioned detectors at low SNR
scenario. In addition, the non-robust MOE-RSD detector is analyzed in this scenario. It is apparent
from the figures that the quadratic constraint boosts the steady-state performance of the RLS and
RSD algorithms. In addition, the MOE-RSD detector outperforms the MOE-RLS algorithm in
terms of the steady-state performance and convergence speed.

We can observe from all scenarios that the proposed MOE-RSD w. QC detector outperforms the
MOE-RLS w. QC detector and offers considerable improvement over the MOE-RLS algorithm.
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Figure 9. BER versus iterations for the fourth scenario.
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Figure 10. SINR versus iterations for the fifth scenario.

Additionally, the robustness of the quadratically constrained class of detectors compared with the
traditional MOE detector is evident from simulations.

Finally, it is interesting to investigate the effect of the step-size on the convergence of the
proposed adaptive detector. It is notable to emphasize the effect of the QI constraint on the MOE-
RSD algorithm where it acts as a compensator for the improper step-size selection. Therefore,
the QI constraint algorithm is less sensitive to the step-size selection. In order to corroborate
the preceding finding, a new simulation is conducted in Figures 12 and 13 based on the fifth
scenario. This simulation analyzes the effect of the improper step-size selection on the algorithm
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Figure 11. BER versus iterations for the fifth scenario.
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Figure 12. SINR for MOE-RSD and MOE-RSD w. QC algorithms with different � values.

performance. The improper step-size is modelled by the improper selection of the parameter �
in (12). Three values for � are tested with both MOE-RSD and MOE-RSD w. QC detectors. The
figures indicate that the QI constraint compensates the improper selection of the factor �. On
the other hand, the steady-state performance and convergence rate of the non-robust MOE-RSD
algorithm are affected by the selection of this factor. However, by comparing Figures 12 and 13
with Figures 10 and 11, the performance of the worst MOE-RSD algorithm (�=0.9) is analogous
to the MOE-RLS algorithm.
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Figure 13. BER for MOE-RSD and MOE-RSD w. QC algorithms with different � values.

5. CONCLUSIONS

In this paper, we have proposed a new robust blind multiuser detector, based on the MOE detector
with GSC structure and a QI constraint on the weight vector norm. An optimal VL technique based
on a fast low-complexity RSD algorithm is exploited to satisfy the QI constraint. The diagonal
loading term is computed using a simple quadratic equation with low complexity. It is evident
from the simulations that the new proposed detector outperforms other approaches in terms of
the robustness and the steady-state performance. Other attractive merits of the proposed approach
are the simplicity and the low computational complexity. Moreover, the adaptive procedure does
not require matrix inversion and the algorithm is not sensitive to the improper step-size selection.
Future work may include combining RSD-VL algorithm with the channel estimation techniques
or with other signature mismatch constraints to produce two-fold robust detectors.
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